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Abstract—The effect of nonuniform permeability and thermal diffusivity on natural convection through a
porous system heated from the side is investigated numerically. The first part of the study, in Section 2, focuses
on systems composed of vertical sublayers. Itis shown that the heat transfer rateis influenced substantially by
the thickness and permeability of the peripheral sublayers adjacent to the heated vertical walls. The heat
transfer results are correlated by using the ratio of peripheral sublayer thickness divided by the boundary layer
thickness based on peripheral sublayer properties. The second part of the study, in Section 3, deals with porous
systems composed of horizontal sublayers with different permeabilities. It is shown that due to the lack of
homogeneity the vertical walls of the system are lined by boundary layers whose thicknesses vary from one
sublayer to the next. A general heat transfer scaling law for horizontally layered systems is reported.

NOMENCLATURE

fluid specific heat at constant pressure
sublayer thickness

gravitational acceleration

dimensionless group for horizontally-layered
systems, equation (26)

vertical dimension

thermal conductivity of fluid/porous matrix
composite

permeability

horizontal dimension
Nusselt number, equations (16) and (25)
pressure

net heat transfer rate, equation (17) [Wm™']
Rayleigh number based on H, equation (14)
temperature

right wall temperature (cold)

left wall temperature (hot)

temperature difference, T;,— T¢

horizontal velocity component

vertical velocity component

horizontal Cartesian coordinate
y  vertical Cartesian coordinate.
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hﬁ

Greek symbols
o  thermal diffusivity of porous medium, k/pc,,
B coefficient of thermal expansion
6r thermal boundary layer thickness
p viscosity
v kinematic viscosity, yu/p
p  fluid density
Y streamfunction.

Subscripts
i pertaining to the ith sublayer,i = 1,...,n
f pertaining to the fluid.

QOther symbols
~  dimensionless quantity.
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1. INTRODUCTION

THEHEAT transfer induced by buoyancy effects in fluid-
saturated porous media has attracted considerable
attention during the past decade. The interest in this
fundamental topic is fueled by applications in many
real-life situations ranging from thermal insulation
engineering to geothermal energy extraction. A large
cross section of the fundamental research contributed
to this topic has been reviewed in a recent paper [1].

In the context of thermal insulation applications,
which is the focus of Section 2 and the main part of the
present study, one can identify a large class of
convection problems consisting of a two-dimensional
porous system confined between two differentially-
heated vertical walls and two adiabatic horizontal
walls. The research devoted to this class of problems is
relatively new. A number of ecarly experiments
demonstrated that the net heat transfer rate across the
porous layer increases monotonically as the Rayleigh
number increases [2-4]. These measurements were
verified later by Bankvall [5] in a numerical study
which simulated the steady-state convection pattern in
the range 0.5 < H/L <50 and 1 <Ra < 200. Similar
results were obtained by Chanet al. [6] and Burns et al.
{73

The theoretical work on natural convection heat
transfer through a porous layer heated and cooled from
the side was pioneered by Weber [8] who developed an
Oseen-linearized solution for the boundary layer
regime in a very tall layer (H/L>» 1). The Weber
solution was modified later by Bejan [9] to account for
the net heat transfer which takes place vertically
through the core region of moderately tall layers.
Simpkins and Biythe [10] reported an alternative
theory for the boundary layer regime based on an
original closed-form solution [11]. Simpkins and
Blythe [10] showed that the boundary layer theories of
refs. [8-10] account satisfactorily for the net heat
transfer rates reported experimentally and numerically
for high Rayleigh numbers in tall layers in the steady
state.

A number of studies have shown that the thermal
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convection pattern in a shallow (H/L < 1) configur-
ation can differ greatly from the pattern described
experimentally [4], numerically [5-7] and theoreti-
cally [8-10] in tall spaces. Walker and Homsy [12]
developed an asymptotic solution for the flow and
temperature fields inside a shallow layer using the
aspect ratio as the small parameter. They showed that
unlike in tall layers the core region plays an active role
in the heat transfer process. An approximate integral-
type solution for the same geometry was proposed by
Bejan and Tien [13]. Most recently, the shallow
geometry was the subject of a numericalstudy [14]. The
patterns of isotherms and streamlines published in ref.
[14] differ substantially from the patterns in tall layers
[5,6], suggesting that the mechanics of shallow layer
circulation differs fundamentally from that of tall
layers.

The literature survey presented above demonstrates
that our knowledge of natural convection in porous
layers heated from the side is constrained by the idea
(themodel)that the porouslayeris homogeneous.Inreal
life, however, most porous insulation systems are
inhomogenecous, partly due to fabrication procedures
and partly (more often) due to installation by human
hand. The inhomogeneity of the porous medium makes
it possible for certain regions of the medium to play the
decisive role with regard to the thermal insulation
capability of the system. If, for example, the porous
material is packed so that the permeability of near-wall
regions is greater than the permeability of far regions,
then the buoyancy-driven flow will be channeled along
the walls.

The importance of flow channeling and porous
medium inhomogeneity was recognized at the most
recent Natural Convection Workshop [15]. Thus, the
main objective of the present study is to determine the
effect of porous medium inhomogeneity on heat
transfer through a verticallayer heated from the side. In
particular, we seek to establish the heat transfer effect of
‘flow channeling’; that is, the effect of relatively more
permeable regions situated adjacent to the vertical
walls.

In Section 3 we document the effect of porous matrix
inhomogeneity on heat transfer through a horizontal
layer. Motivated by geophysical applications, we
consider a horizontal layer model consisting of two
individually homogeneous sublayers. This model
simulates the flow driven through high-permeability
layers by temperature gradients existing in the
horizontal direction. The opposite situation, i.c. the
inhomogeneous porous medium flow driven by
temperature gradients in the direction of the earth’s
radius, was investigated in a recent paper [16].

2. VERTICAL LAYERS

2.1. Mathematical formulation

Consider a two-dimensional rectangular cavity filled
with a fluid saturated multilayered porous medium.
The overall dimensions of the layer are H and L, Fig. 1.
It is assumed that this porous layer is made up of n
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separately homogeneous and
sublayers.

In accordance with the homogeneous porous
medium model [1], the equations governing the
conservations of mass, momentum and energyin the ith

layer in the steady state are:

isotropic vertical

6u+(?v_0 1

ox dy O

L _KioP )
Ton ox’ @

_ K; (7P+ 3

v= “ ay pg ’ ()
T, OT_ (3T &1 “
Ox ”ay_ N\ox? " ayr ) )

where u, v, u, P and T are the fluid velocity components,
the viscosity, the pressure and the temperature,
respectively. The two momentum equations are based
on the Darcy flow model and K; represents the
permeability of the porous matrix of the ith layer. The
effective thermal diffusivity is defined as «; = k/(pc,);
where k; is the thermal conductivity of the ith porous
sublayer filled with stagnant fluid. It is assumed that the
fluid is locally in thermal equilibrium with the solid
porous structure.
Invoking the Boussinesq approximation,

p = poll =B(T-To)],

climinating the pressure terms between equations (2)
and (3), and introducing the streamfunction

& Y
u= ' v= Ix (5)
1
e ™
H ] d al
v
!Ia -
a v ;f 77
L ———

F1G. 1. Schematic of a rectangular space filled with a fluid-
saturated multilayered porous material.
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yields a unique momentum conservation statement
o? 62 KgB oT
y=—-—— (6)
ox? 8y v Ox
The multilayered porous matrix/fluid system is
surrounded by solid boundaries described by

u=0, T=T;, atx=0, @

u=0, T=T, atx=1L, (8)
T

v=0, —=0 aty=0H. )
oy

The above boundary conditions account for the
impermeability of the rectangular cavity and the fact
that the two horizontal walls are adiabatic, while the
two vertical walls are kept at different temperatures, Ty
and T, with Tj; > T

In what follows, we determine numerically the effect
of sublayering, specifically the effect of ‘channeling’, i.e.
the case of maximum permeability near the vertical
walls, and the effect of *packing’, or the case of least
permeability near the walls. We document these effects
by focusing on a three-sublayer model of the porous
system of Fig. 1.

2.2. Numerical solution

Selecting H, «,, and AT = T;;— T as reference units
for length, streamfunction and temperature variation,
respectively, we define the following dimensionless
variables

. T—T
T= <. 10

.f=X/H, )}:y/Hv ‘ﬁ=¢’/°‘1a T.—T.
H™ iC

The corresponding form of the governing equations
and boundary conditions is

& P\ a, K; 8T
(ae* )*””‘ Wk o
2 2\,
— — (6T T, 12
)+ 2 6T) = a(a‘2+ay>, (12
=0, $=0 and T=1 at ¥=0,
1=0, y=0 and T=0 at x=L/H, (13)
~ T
=0, y=0 and 6_)‘;=0 at y=0
" T
=0, y=0 and 9—.=0 at y=1,
ay

where Ra, is the Darcy-modified Rayleigh number
based on the height of the enclosure and the properties
of the porous sublayer adjacent to the warm (left) wall

K gBH(Ty—To)

Ra, = o
1

(14)

The dimensionless formulation (11)-(13) shows the
emergence of two more dimensionless groups (in
addition to the usual, Ra, and H/L), namely, the
relative permeability K;/K, and the relative thermal
diffusivity o;/a;.
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The numerical solution of cquation (12) was
determined using the unconditionally stable finite
difference scheme proposed by Allen and Southwell
[17], which was improved and tested successfully by
Chow and Tien [18]. The Allen-Southwell method is
an exponential scheme: its detailed formulation is
omitted here, for it can be found in refs. [17, 18]. The
streamfunction field was obtained from equation (11)
using the successive over-relaxation method [19]and a
known temperature distribution.

The region of interest was covered with m vertical
and ! horizontal grid lines; the grid fineness mx 1 = 41
x 81 was used for the present solution, even though
mx1l=21x41 yielded very reasonable results. The
final flow and temperature fields resulted from an
iterative process that was repcated until the following
criterion was satisfied

m
X

i=1

] '+1_¢;)1
! <1075

i
X

(15)

".Ms i )~

In criterion (15) ¢ refers to T and , and r denotes the
iterative cycle.

The effect of fluid motion on the heat transfer
between the two vertical walls of the porous layer was
evaluated by computing the conduction-referenced
Nusselt number

Nu = g - s

H(T,— T/ 3. (d/k)
i=1

(16)

where d; and k; are the thickness and the overall
fluid/porous matrix conductivity of the ith sublayer of
the system (see Fig. 1). The overall heat transfer rate Q is

defined as
§i4 aT
o= n(E). o
[ X /x=0

In terms of dimensionless quantities, equation (10), the
Nusselt number reads

» kl) II(GT)
Nu=— - dy.  (18)
(i=1 H k; ] Jo \0% /z=0

Equation (18) was integrated numerically after the final
temperature field was obtained. A relation similar to
equation (18) is obtained by integrating the heat flux
along the cold wall located at x = L. This second
Nusselt number calculation was carried out, and the
results were found to be nearly identical to the values
yielded by equation (18); the discrepancy between the
results to the two approaches was less than 1.5%
throughout this study.

17

2.3. Flow and temperature fields

Since in many fibrous insulation systems, the
conductivity of the fluid (air} dominates the aggregate
conductivity of the fluid-saturated porous composite
[16], the calculations reported in this paper are based
on the assumption that the thermal diffusivity of the
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(b)

F1G. 2. Numerical solution for H/L =2, Ra, = 500, n = 3, d\/L = d4/L. =02, K,/K,; =02, K,/K, =1,
o, = oy = 3. (a) Streamline pattern, (b) isotherm pattern.

porous medium (%) is independent of position. This
assumption served to isolate the effect of channeling or
packing, ie. the effect of the permeability function
K;/K on the net heat transfer rate through the porous
system.

The effect of flow channeling along the vertical walls
of a porous layer is shown by the three-sublayer model
in Fig. 2. The permeability of the two outer sublayers
is five times greater than the permeability of the
core region. At a relatively high Rayleigh number,
Ra, = 500, the vertical flow takes place primarily
through the more permeable vertical sublayers, hence,
the naming of this effect as ‘channeling’. The two outer
sublayers exchange fluid mainly through the upper and
lower ends of the inner, less permeable, region. It is
worth noting that the step variation in permeability
across the interfaces of the. different sublayers induces
step changes in the slopes of both streamlines and
isotherms. The abrupt change in the slope of the
T = constant line is required by the conservation
of energy across the interfaces, keeping in mind that
this energy flow is due to a combination of thermal
diffusion and enthalpy flow.

The opposite effect, the effect of packing associated
with relatively less permeable outer sublayers, is shown
in Fig. 3. The more permeable inner region appears to
‘attract’ the flow: this property renders the isotherms of
this region almost horizontal and yields a vertically
stratified core.

2.4. Heat transfer results
The ultimate objective of the present study was to
establish the effect of nonuniform permeability on heat

transfer. We pursued this objective on twofronts: on the
one hand by calculating the heat transfer rate
numerically and documenting it as in Figs. 4(a) and (b)
and, on the other hand, byrelying on scaling analysis to
explain the observed trends and to correlate the
numerical heat transfer results, as in Figs. 5(a) and (b).

The effect of channeling on heat transfer is shown in
Fig. 4(a). The conduction-referenced Nusselt number
increases steadily as the channel thickness d,/L
increases and, as one would expect, as the Rayleigh
number increases. The chief message of Fig. 4(a) is that
in the high-Rayleigh-number regime the net heat
transfer rate is influenced strongly by the thickness of
the wall sublayers of maximum permeability. The
reverse trend is observed if the permeability of the wall
sublayers is less than the permeability of the core
sublayer. As shown in Fig. 4(b), the heat transfer rate
decreases as the wall sublayer thickness d,/L increases;
the effect becomes more and more pronounced as the
Rayleigh number increases; in other words, as the
convection phenomenon is dominated by vertical
boundary layers.

To explain the above heat transfer trends, we recall
first that in the boundary layer regime the Nusselt
number scales mainly as [8]

Nu ~ Ra'’?, (19)
where Rais the Rayleighnumber based on height H and
wall-to-wall temperature difference. Furthermore, in 2
homogeneous porous layer the thickness of each
vertical boundary layer scales as [8]

dr~ H Ra= 12, (20)
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Fig. 3. Numerical solution for H/L =2, Ra, =200, n =3, d\/L =d,/L =02, K,/K, =5, K;/K; =1,
@y = oty = o3. (a) Streamline pattern, (b) isotherm pattern.

Turning our attention to the case of heat transfer
through a layer with high-permeability sublayers near
the vertical walls (channeling), it is reasonable to expect
that the Nu variation shown in Fig. 4(2) is due to the
competition between two length scales, the boundary
layer thickness dyand the sublayer thicknessd;. Indeed,
by plotting the Nu—d, /L data of Fig. 4(a) as Nu/Ra!’?
vs d,/64, it is possible to correlate the heat transfer
calculations so that the results fall on what appears to
be a single curve [see Fig. 5(a)].

The important conclusion to be drawn from Fig. 5(a)
is that the high-permeability sublayers influence the
overall heat transfer rate if their thickness is of the same
order of magnitude or greater than the thermal

10

Ra,
& 100
al 4 250
¢ 500
01000

6}

Nu
4:/‘?://
24 i
o L L L g :

o A 2 3 A 5
d/L
(a)

boundary layer thickness. This conclusion is reinforced
by Fig. 5(b), which shows the Nu/Ra}*—d,/é;
correlation of the heat transfer data of Fig. 4(a) for a
layer with a high-permeability core. Note that in this
case Nu scales as Ral/?, where Ra, is based on the high
permeability located in the core. In the case of
channeling, Fig. 5(a), Nu scales as Ra}’%, where again
Ra, is based on the high permeability of the peripheral
sublayers.

3. HORIZONTAL LAYERS

The effect of porous matrix inhomogeneity on
natural convection through horizontal layers can be

dn)L
(b)

F1G. 4. The relationship between the heat transfer rate and the thickness of the peripheral sublayer (n = 3,
d, =dy, K, = K;, a; = a, = a,). (a) The peripheral layers have the highest permeability, K;/K, = 02.
(b) The core layer has the highest permeability, K,/K; = 5.
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F1G. 5. Correlation of the heat transfer data of Figs. 6(a) and (b). (a) K/K; = 0.2, (b) K,/K, = 5.

analyzed in the same manner as the vertical layers of
Section 2. However, due to space limitations, this
section will only focus briefly on the case of convection
in a two-sublayer horizontal system (Fig. 6). From the
outset, we expect to encounter a (heat transfer)-
(permeability) relationship different than in Section 2,
as the heat transfer mechanism in horizontal layers
differsmarkedly fromthatin tall vertical layers [13, 14].

Consider the system of Fig. 6 where H/L = 0.5 and
the upper sublayer is five times more permeable than
the lower, K,/K, = 5. Assuming once again that the
thermal conductivity of the fluid dominates the
aggregate conductivity of the porous composite [16],
wetake xasuniform throughout the system: in this way,
we isolate the role played by the permeability function
K,/K, on the end-to-end heat transfer through the
system. The mathematical and numerical formulation
employed previously (Sections 2.1 and 2.2) applies to
this convection problem as well; however, in this case
the grid fineness used is mx [ = 81 x41. A represen-
tative set of isotherms and streamlines is presented in
Figs. 6(a) and (b) for Ra; = 150, where Ra, is based on
the end-to-end AT, the overall height of the system, H,
and the low permeability K,. The streamlines show
that the cellular flow prefers the more permeable upper
half of the system. The streamline pattern is no
longer centrosymmetric (as in homogeneous systems
[14]); instead, the streamfunction maximum is located
in the upper half, near the ‘starting corner of the cold
vertical boundary layer.

The map of isotherms, Fig. 6(b), reveals the existence

of strong convective effects in the establishment of the
temperature field. Distinct thermal layers are aligned
with the vertical walls of the porous medium. The
vertical boundary layers are sharper in the more
permeable half of the system, as expected.

Figures 7(a) and (b) show the effect of permeability
and inhomogeneity on heat transfer. In particular, Fig.
7(a) shows that the conduction-referenced Nusselt
number Nu increases rather sharply as K,/K,
increases, i.e. as the channel provided by the upper
sublayer becomes more permeable. Increasing the
Rayleigh number Ra, has the effect of increasing both
the Nusselt number and the slope of each Nu (K,/K,)
curve.

Finally, Fig. 7(b) shows the effect of varying the
sublayer height ratio d,/H, where d, is the height of the
lower (less permeable) sublayer. Note that for d,/H
< 0.landd,/H > 09 theeflect of d,/H on Nubecomes
less dramatic: in the former case, the less permeable
layer is too small to seriously influence the net heat
transfer, while in the latter most of the fluid has already
been discharged from the vertical boundary layers into
the core, and a further increase in d,/H is not likely to
enhance by much the convective heat transfer
contribution to the net heat transfer through the
system.

The heat transfer trends exhibited in Figs. 7(a)and (b)
can be predicted and correlated based on scale analysis-
The streamline pattern of Fig. 6(a) shows that the
thickness of each vertical boundary layer decreases
sharply across the interface separating the two
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(b)

F1G. 6. Numerical solution for H/L = 0.5, Ra, = 150, n = 2, d, = d,, K,/K, = 5, 2,/x, = 1.(a) Streamline
pattern, (b) isotherm pattern.
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FIG. 7. Heat transfer through a horizontally layered system (a) Nu vs K»/K, (n = 2,d, = dp, oy = a,),(b) Nuvs
difH(n=2,K,[K; =50, = a,).

W 26:12-¥



1812

D. PouLIKAKOS and A. BEJAN

1 1—
g 2]
&
a
| & =]
[ a
o o g 8809 4 - & 8 T
o o o a8 a o 0
G 5 o a G - s B %
[ a a o a
o & - o g
A N
o L a 4
Raq, Ra,
' s 50 I s 50
o |00 o 100
o |50 o 150
.1 1 1 i 1 i M —_— 1 1 N — L I —_—
1 10 10 5 1
K./K, d/H

(a)

(b)

FIG. 8. Correlation of the heat transfer data of Figs. 10(a) and (b), (a) G vs K,/K,,(b) G vs d,/H.

sublayers. Since each sublayer is homogeneous, the
order of magnitude of the vertical boundary layer
thicknessineachsublayeris [8] [see alsoequation (20)]

KdAT/2\™1/?
5i~d1(———‘gﬁ — /) , 1=12

av

2n

Then,looking at the variable-thickness boundary layer

coating one vertical wall, the total heat transfer rate

through the wall is of order
AT/2

Q=0,+Q, ~ kd16—+kd2
1

AT/2
=, (22)

where, forexample, Q, is the heat transfer collected over

the sublayer vertical boundary layer of thickness §, and

height d,. Recalling the dimensionless notation used

throughout this study

0 _ gBHK,AT
v

== 2
Nu RHAT/L a, , (23)

the scaling law (22) reduces to

L d\"?
~2732 2 patiz [ (2L
Nu i Ra; [( )

K, 1/2 d, 1/2
() (%)} e

Based on the same argument, if the system contains n
horizontal sublayers, the scaling law (24) assumes the
more general form

L *(Kd \'?
Nu~2"32—Ral? ¥ (€))7
“ i Rai® 2 (K,H)

To test the validity of the above scaling, the heat
transfer results of Figs. 7(a) and (b) have been replotted

25)

in Figs. 8(a) and (b) as the new group

Nu
G=

— ~ 0(1). (26)
273%(L/H) Ra}* Y (Kd/K H)'?

i=1

It is clear that in the high Ra cases covered by the heat
transfer calculations reported in Figs. 8(a) and (b), the G
group is of O(1), in agreement with the predictions
based on scale analysis. Therefore, the Nusselt number
expression (25) provides an adequate means for
predicting the scale of heat transfer in a multilayered
horizontal porous medium in the boundary layer
regime.

4. CONCLUSIONS

The object of this study has been to document the
effect of porous medium inhomogeneity on the natural
convection heat transfer through systems heated in the
horizontal direction. Special emphasis was placed on
the effect of nonuniform permeability. Section 2 was
devoted to porous systems composed of sublayers
oriented vertically. Numerical solutions to the
convection problem showed that:

(a) discontinuities in porous medium permeability
cause cusps in both strcamline and isotherm
patterns;

(b) the flow prefers to inhabit the sublayer(s) of
highest permeability;

(c) the heat transfer rate is influenced substantially
by the thickness and permeability of the
peripheral sublayers adjacent to the heated
vertical walls [Figs. 4(a) and (b)];

(d) an important dimensionless parameter is the
ratio of sublayer thickness divided by the
boundary layer thickness based on sublayer
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properties [Figs. 5(a) and (b)]: this parameter
was used to correlate the heat transfer data.

Section 3 focused on convection in porous systems
with horizontal sublayers. The new feature revealed by
the patterns of Figs. 6(a) and (b) is the presence of
vertical boundary layers of nonuniform thickness: this
feature is due to the fact that the constant-permeability
sublayers are normal to the differentially heated side
walls. Numerical heat transfer calculations showed that
thetotal heat transfer rate through horizontally layered
systems depends strongly on the relative permeability
and thickness of the sublayers [Figs. 7(a) and (b)]. The
heat transfer data were correlated via scaling
arguments (Fig. 8).
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CONVECTION NATURELLE DANS UN MILIEU POREUX A COUCHES VERTICALES OU
HORIZONTALES ET CHAUFFE LATERALEMENT

Résumé—On étudie numériquement I'effet d'une perméabilité et d'une diffusivité thermique non uniformes
pour un systéme poreux chauffé latéralement. La premiére partie de I’étude, section 2, s’intéresse aux systémes
composés de sous-couches verticales. On montre que le flux thermique de chaleur est sensiblement influencé
par I'épaisseur et la perméabilité des couches périphériques adjacentes aux parois verticales chauffées. Les
résultats de transfert thermique sont unifiés en utilisant le rapport de I'épaisseur de la sous-couche
périphérique 4 I'épaisseur de la couche limite basée sur les propriétés de la sous-couche périphérique. La
second partie de I'étude, en section 3, concerne des systémes poreux composés de sous-couches horizontales
avec des perméabilités différentes. On montre qu'a cause de F'absence d’homogénéité, les parois verticales du
systéme sont bordées par des couches limites dont les épaisseurs varient d’une sous-couche a I'autre. Une loi
générale d’échelle est donnée pour les systémes & couches horizontales.

FREIE KONVEKTION IN VERTIKAL UND HORIZONTAL GESCHICHTETEN,
SEITLICH BEHEIZTEN, POROSEN MEDIEN

Zusammenfassung—Es wird der EinfluB der ungleichformigen Permeabilitat und Wirmeleitfahigkeit auf die
freie Konvektion in einem pordsen, seitlich beheizten System numerisch untersucht. Der erste Teil der
Abhandlung konzentriert sich in Abschnitt 2 auf Systeme, die aus vertikalen Teilschichten bestehen. Es wird
gezeigt, daB der Wirmeiibergang wesentlich von der Dicke und der Permeabilitit der an die beheizten
vertikalen Winde angrenzenden Randschichten abhiingt. Die Ergebnisse des Wérmetibergangs werden
dargestellt, indem der Quotient aus der Dicke der Randschicht und der mit den Stoffwerten der Randschicht
gebildeten Grenzschicht verwendet wird. Der zweite Teil der Untersuchung handelt in Abschnitt 3 von
pordsen Systemen, die aus horizontalen Teilschichten mit unterschiedlichen Permeabilititen bestehen. Es
wird gezeigt, daB sich wegen dieses Mangels an Homogenitit an den vertikalen Wanden des Systems
Grenzschichten befinden, deren Dicke von einer Teilschicht zur nichsten variiert. Es wird {iber ein allgemeines
Ahnlichkeitsgesetz der Warmeiibertragung fiir horizontal geschichtete Systeme berichtet.
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ECTECTBEHHAS KOHBEKIHS B HATPEBAEMBIX CEOKY BEPTHKAJIbHBIX H
TOPH30OHTAJIBHBIX CJIOSIX MMOPHCTHIX CPEJ

AnnoTauwa—UncIenHo HCCIeAyeTCA BIMSHHE HEOIHOPOAHOI NMPOHHUAEMOCTH M TeMMOEPATyponpo-
BOJHMOCTH Ha €CTECTBCHHYIO KOHBEKLHIO B Harpeaemoii cOoxy mopucroit cucreste. Ilepsas 4acThb
nccnenoBanns (naparpad 2) nocBsucHA CHCTEMAM, COCTOALINM M3 BEPTHKATIbHBIX MOJICIOCB.
INMoka3ano, 4T0 Ha MHTCHCHBHOCTBL TEMIONEPEHOCA CYIUCCTBEHHOE BIHSHHE OK23bIBAKOT TOILUIHHA i
npoHuuaeMocth nepudepHiiHbix NOACTOEB, NPHETAIOUIMX K HATPETHIM BePTHKATHHBIM CTEHKAM.
PesyneTaThl no TennonepeHocy o6pabaTblBaioTCs € NOMOLILIO OTHOLUEHHS TOIULHE! nepidepuiinoro
NONCI0% . K TOJIMMHE NOTPAHHYHOTO CIOM, BBIMHCISeMOil NO XxapaktepHcrikasm nepudepuiiHoro
noacios. Bropas wacts uceregosanns (naparpad 3) nocBAueHa MOPHCTBIM CHCTEMAM, COCTOSLUIM
H3 FOPH3OHTANLHBIX MOJCIOEB C Pa3IHYHBIMH NPOHHUaeMOCTaMi. [Toka3aHo, YTO H3-332 OTCYTCTBHS
OMHOPOJHOCTH HA BEPTHKANBHBIX CTEHKaX CHCTeMBI OOpa3yloTcs MNOTpaHimuHble CI0H, TOTIHHA
KOTOPBIX H3MEHACTCS OT noacios K mojacnot. Ilpextoxen obumiii 3akon no1obus TtensonepeHoca
U1 CHCTEM € TOPH3OHTATBHBIMH CTOSAMIL.





