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Abstract-The effect of nonuniform permeability and thermal d iffusivity on natural convection through a
porous system heated from the side is investigated numerically. The first part of the study, in Section 2, focuses
on systems composed of vert ical sublayers. It is shown that the heattransferrate is influenced substant ially by
the thickness and permeability of the peripheral sublayers adj acent to the heated vertical walls. The heat
transfer results are correlated by using the ratio of peripheral sublayer th ickness divided by the boundary layer
th ickness based on peripheral sublayer properties. The second part of thestudy, in Section 3,deals with porous
systems composed of horizontal sublayers with different perrncabilities. It is shown that due to the lack of
homogeneity the vertical walls of the system are lined by boundary layers whose thicknesses vary from one

sublayer to the next. A general heat transfer scaling law for horizontally layered systems is reported.

1'\O:\tEI"CLATURE

C p fluid specific heat at constant pressure
d subl ayer thickness
g gravitational acceleration
G dimensionless group for hor izontally-layered

systems, equation (26)
H vertical dimension
k thermal conductivity of fluid/porous matri x

composite
K permeability
L horizontal dimension
Nil .Nusselt number, equations (16) and (25)
P pressure
Q net heat transfer rate, equation (17) [Wm -I)
Ra Rayleigh number based on H, equation (14)
T temperature
Tc right wall temperature (cold)
TH left wall temperature (hot)
!1T temperature difference, '1;1- Tc
II horizontal velocity component
v vertical velocity component
x horizontal Cartesian coordinate
y vertical Cartesian coordinate.

Greek symbols
a. thermal diffusivity of porous medium, k/pcp

P coefficient of thermal expansion
Dr thermal boundary layer thickness
J.I viscosity
\' kinematic viscosity, J.I/p
p fluid density
t/J strearnfunction.

Subscripts
i pertaining to the ith sublayer, i = I, ... ,11

f pertaining to the fluid.

Other symbols
dimensionless quantity.

• Pre sent address: Department of Mechanical Engineering,
Un iversity of Illino is at Chicago, P.O. Box 4348, Chicago, IL
60680, U.S.A.

I.I"'TRODUCfIO:'o:

THEHEAT transfer induced by buoyancy effectsin fluid­
saturated porous media has attracted considerable
attention during the past decade. The interest in this
fundamental topic is fueled by applications in many
real-life situations ranging from thermal insulation
engineering to geothermal energy extraction. A large
cross section of the fundamental research contributed
to this topic has been reviewed in a recent paper [1].

In the context of thermal insulation applications,
which is the focus of Section 2 and the main part of the
present study, one can identify a large class of
convection problems consisting of a two-dimensional
porous system confined between two differentially­
heated vertical walls and two adiabatic horizontal
walls. The research devoted to this class of problems is
relatively new. A number of early experiments
demonstrated that the net heat transfer rate across the
porous layer increa ses monotonically as the Rayleigh
number increases [2-4]. These measurements were
verified later by Bankvall [5] in a numerical study
which simulated the steady-state convection pattern in
the range 0.5 < H/L <50 and 1 <Ra < 200. Similar
results were obtained by Chan et al. [6] and Burns et al.
[7].

The theoretical work on natural convection heat
transfer through a porous layer heated and cooled from
the side was pioneered by Weber [8] who developed an
Oseen-linearized solution for the boundary layer
regime in a very tall layer (H/L» 1). The Weber
solution was modified later by Bejan [9] to account for
the net heat transfer which takes place vertically
through the core region of moderately tall layers.
Simpkins and Blythe [10] reported an alternative
theory for the boundary layer regime based on an
original closed-form solution [11]. Simpkins and
Blythe [10] showed that the boundary layer theori es of
refs. [8-10] account satisfactorily for the net heat
transfer rates reported experimentally and numerically
for high Rayleigh numbers in tall layers in the steady
state.

A number of studies have shown that the thermal
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p = Po[l-P(T-To)],

FIG. I. Schematic of a rectangular space filled with a fluid­
saturated multilayered porous material.

eliminating the pressure terms between equations (2)
and (3), and introducing the streamfunction
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separately homogeneous and isotropic vertical
sublayers.

In accordance with the homogeneous porous
medium model [I], the equations governing the
conservations of mass, momentum and energy in the ith
layer in the steady state are:

Gil + GV = 0
ax ay

KI(iJP )v= -- -+pg ,
JI 8y

et 8T (iJ2T 8ZT)

II ax + v8y = (XI 8xz + ayz '

where II, v,p, P and Tare the fluid velocity components,
the viscosity, the pressure and the temperature,
respectively. The two momentum equations are based
on the Darcy flow model and K I represents the
permeability of the porous matrix of the ith layer. The
effective thermal diffusivity is defined as (Xi = kJ(pcp)r
where k, is the thermal conductivity of the ith porous
sublayer filledwith stagnant fluid. It isassumed that the
fluid is locally in thermal equilibrium with the solid
porous structure.

Invoking the Boussinesq approximation,

convection pattern in a shallow (HIL < I) configur­
ation can differ greatly from the pattern described
experimentally [4], numerically [5-7] and theoreti­
cally [8-10] in tall spaces. Walker and Homsy [12]
developed an asymptotic solution .for the flow and
temperature fields inside a shallow layer using the
aspect ratio as the small parameter. They showed that
unlike in tal1layers the core region plays an active role
in the heat transfer process . An approximate integral­
type solution for the same geometry was proposed by
Bejan and Tien [13]. Most recently, the shallow
geometry was the subject ofa numerical study [14]. The
patterns of isotherms and streamlines published in ref.
[14] differ substantially from the patterns in tall layers
[5,6], suggesting that the mechanics of shallow layer
circulation differs fundamental1y from that of tal1
layers.

The literature survey presented above demonstrates
that our knowledge of natural convection in porous
layers heated from the side is constrained by the idea
(the model) that the porous layer is homoqeneous. In real
life, however, most porous insulation systems are
inhomogeneous, partly due to fabrication procedures
and partly (more often) due to instal1ation by human
hand.The inhomogeneity of the porous medium makes
it possible for certain regions of the medium to play the
decisive role with regard to the thermal insulation
capability of the system. If, for example, the porous
material is packed so that the permeability of near-wall
regions is greater than the permeability of far regions,
then the buoyancy-driven flow will be chann eled along
the wal1s.

The importance of flow channeling and porous
medium inhomogeneity was recognized at the most
recent Natural Convection Workshop [IS]. Thus, the
main objective of the present study is to determine the
effect of porous medium inhomogeneity on heat
transfer through a vertical layer heated from the side. In
particular, we seek to establish the heat transfer effectof
'flow channeling'; that is, the effect of relatively more
permeable regions situated adjacent to the vertical
wal1s.

In Section 3 we document the effectof porous matrix
inhomogeneity on heat transfer through a horizontal
layer. Motivated by geophysical applications, we
consider a horizontal layer model consisting of two
individual1y homogeneous sublayers. This model
simulates the flow driven through high-permeability
layers by temperature gradients existirrg in the
horizontal direction. The opposite situation, i.e. the
inhomogeneous porous medium flow driven by
temperature gradients in the direction of the earth's
radius, was investigated in a recent paper [16].

2. VERTICAL LAYERS

2.1. AI athematical formulation
Consider a two-dimensional rectangular cavity filled

with a fiuid saturated multilayered porous medium.
The overall dimensions of the layer arc Jl and L, Fig. I.
It is assumed that this porous layer is made up of 11
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m I

L L !r/>i.j '-if>i)
j=1 ~=1 I < to- 5 . (15)

L L lif>i,jl1
j=l j=l

In criterion (15) if> refers to l' and t/i, and r denotes the
iterative cycle.

The effect of fluid motion on the heat transfer
between the two ·vertical walls of the porous layer was
evaluated by computing the conduction-referenced
Nusselt number

The numerical solution of equation (12) was
determined using the unconditionally stable finite
difference scheme proposed by Allen and Southwell
[17], which was improved and tested successfully by
Chow and Tien [18]. The Allen-Southwell method is
an exponential scheme: its detailed formulation is
omitted here, for it can be found in refs. [17, 18]. The
streamfunction field was obtained from equation (11)
using the successive over-relaxation method [19] and a
known temperature distribution.

The region of interest was covered with //I vertical
and I horizontal grid lines; the grid fineness //I x I = 41
x 81 was used for the present solution, even though

//I x I = 21 x 41 yielded very reasonable results. The
final flow and temperature fields resulted from an
iterative process that was repeated until the following
criterion was satisfied

(16)
Q

1l(1;1- Td/L (dJkJ
i;=1

NlI = -----='-'------

The above boundary conditions account for the
impermeability of the rectangular cavity and the fact
that the two horizontal walls are adiabatic, while the
two vertical walls are kept at different temperatures, 1;1
and To with 1;. > Tc.

In what follows, we determine numerically the effect
of sublayering, specifically the effect of 'channeling', i.e.
the case of maximum permeability near the vertical
walls, and the effect of 'packing', or the case of least
permeability ncar the walls. We document these effects
by focusing on a three-sublayer model of the porous
system of Fig. 1.

yields a unique momentum conservation statement

2.2. Numerical solution
Selecting H, IX" and d T = 1;1- Tc as reference units

for length, streamfunction and temperature variation,
respectively, we define the following dimensionless
variables

• _ A T-T c
x = xf H, Y = y/H, '" = "'/(Xt, T = --. (to)

1;{-1(;

(
a2 a2) K j g [3 er

ax 2 + ay2 '" = - -,,- ax' (6)

The multilayered porous matrix/fluid system is
surrounded by solid boundaries described by

11 = 0, T = 1;1 at x = 0, (7)

11 = 0, T = Tc at x = L, (8)

aT
v = 0, -a = 0 at y= 0, H. (9)

y

The dimensionless formulation (11)-{13) shows the
emergence of two more dimensionless groups (in
addition to the usual, Ra, and H/L), namely, the
relative permeability KJK, and the relative thermal
difTusivity IXJIXI'

(18)

(17)fl1 (aT)Q = - k, -a dy.
o x x=o

In terms of dimensionless quantities, equation (10), the
Nusselt number reads

Nil = -( f dj k') f' (a~) dj',
;=1 H k, 0 OX x=O

Equation (18) was integrated numerically after the final
temperature field was obtained. A relation similar to
equation (18) is obtained by integrating the heat flux
along the cold wall located at x = L. This second
Nusselt number calculation was carried out, and the
results were found to be nearly identical to the values
yielded by equation (18); the discrepancy between the
results to the two approaches was less than 1.5%
throughout this study.

where d, and k, are the thickness and the overall
fluid/porous matrix conductivity of the ith sublayer of
the system (sec Fig. 1).The overall heat transfer rate Q is
defined as

2.3. Flow alld temperature fields
Since in many fibrous insulation systems, the

conductivity of the fluid (air) dominates the aggregate
conductivity of the fluid-saturated porous composite
[16], the calculations reported in this paper are based
on the assumption that the thermal diffusivity of the

(14)

(11)

6= 0, t/i=0 and
at
-=0 at y=Oaj

6= 0, t/i=0 and
at
-=0 at y= 1,as'

where Ra, is the Darcy-modified Rayleigh number
based on the height of the enclosure and the properties
of the porous sublayer adjacent to the warm (left) wall

K Ig[311(1;.- Td
Ra, = .

"IX I

The corresponding form of the governing equations
and boundary conditions is

(
a2 a2) _ (Xl tc, at

-;-::2 + -a'2 '" = - Ral - -K -;-:-,
uX y (Xj 1 uX

a A a _ (Xj ( a2 a2) _
-:;-(liT)+ ---:(6T) = - -. + -.- T, (12)ox ay IX I ax2 oy2

Ii = 0, t/i = 0 and l' = 1 at x= 0,

li = 0, t/i = 0 and l' = 0 at x= L/H, (13)
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FIG. 2. Numerical solution for ll/L = 2, Ral = 500, n = 3, d-fI: = d3/L = 0.2, K2/K I = 0.2, K 3/KI = 1,
(XI = (X2 = (X3' (a) Streamline pattern, (b) isotherm pattern.

porous medium (IX) is independent of position. This
assumption served to isolate the effectof channeling or
packing, i.e, the effect of the permeability function
KJKIon the net heat transfer rate through the porous
system.

The effectof flow channeling along the vertical walls
of a porous layer is shown by the three-sublayer model
in Fig. 2. The permeability of the two outer sublayers
is five times greater than the permeability of the
core 'region. At a relatively high Rayleigh number,
Ra I = 500, the vertical flow takes place primarily
through the more permeable vertical sublayers, hence,
the naming of this effectas 'channeling'. The two outer
sublayers exchange fluid mainly through the upper and
lower ends of the inner, less permeable, region. It is
worth noting that the step variation in permeability
across the interfaces of the different sublayers induces
step changes in the slopes of both streamlines and
isotherms. The abrupt change in the slope of the
T = constant line is required by the conservation
of energy across the interfaces, keeping in mind that
this energy flow is due to a combination of thermal
diffusion and enthalpy flow.

The opposite effect, the effect of packing associated
with relatively less permeable outer sublayers, is shown
in Fig. 3. The more permeable inner region appears to
'attract' the flow:this property renders the isotherms of
this region almost horizontal and yields a vertically
stratified core.

2.4. Heat transfer results
The ultimate objective of the present study was to

establish the effectof nonuniform permeability on heat

transfer. We pursued this objective on two fronts: on the
one hand by calculating the heat transfer rate
numerically and documenting it as in Figs. 4(a) and (b)
and, on the other hand, by relying on scaling analysis to
explain the observed trends and to correlate the
numerical heat transfer results, as in Figs. 5(a) and (b).

The effectof channeling on heat transfer is shown in
Fig. 4(a). The conduction-referenced Nusselt number
increases steadily as the channel thickness dtiL
increases and, as one would expect, as the Rayleigh
number increases. The chief message of Fig. 4(a) is that
in the high-Rayleigh-number regime the net heat
transfer rate is influenced strongly by the thickness of
the wall sublayers of maximum permeability. The
reverse trend is observed if the permeability of the wall
sublayers is less' than the permeability of the core
sublayer. As shown in Fig. 4(b), the heat transfer rate
decreases as the wall sublayer thickness d tiLincreases;
the effect becomes more and more pronounced as the
Rayleigh number increases; in other words, as the
convection phenomenon is dominated by vertical
boundary layers.

To explain the above heat transfer trends, we recall
first that in the boundary layer regime the Nusselt
number scales mainly as [8]

(19)

where Ra is the Rayleigh number based on height Hand
wall-to-wall temperature difference. Furthermore, in a
homogeneous porous layer the thickness of each
vertical boundary layer scales as [8]

(iT ~ II Ra- I / 2 • (20)
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FIG. 3. Numerical solution for ll[L = 2, Ro, = 200, n = 3, dtiL = d3/L =0.2, K2/K, = 5, K3/K, = I,
IX, = <1 2 = 1X3' (a) Streamline pattern, (b) isotherm pattern.

Turning our attention to the case of heat transfer
through a layer with high-permeability sublayers near
the vertical walls (channeling), it is reasonable to expect
that the Nil variation shown in Fig. 4(a) is due to the
competition between two length scales, the boundary
layer thickness br and the sublayer thickness d I' Indeed,
by plotting the NII-d./Ldata of Fig. 4(a) as NII/Ral /2

vs dt/br, it is possible to correlate the heat transfer
calculations so that the results fall on what appears to
be a single curve [see Fig. 5(a)].

The important conclusion to be drawn from Fig. 5(a)
is that the high-permeability sublayers influence the
overall heat transfer rate if their thickness is of the same
order of magnitude or greater than the thermal

boundary layer thickness. This conclusion is reinforced
by Fig. 5(b), which shows the NII/Ra1/2-dt/br
correlation of the heat transfer data of Fig. 4(a) for a
layer with a high-permeability core. Note that in this
case Nil scales as Ra1/2, where RU2 is based on the high
permeability located in the core. In the case of
channeling, Fig. 5(a), Nil scales as Ral'2, where again
Ra, is based on the high permeability of the peripheral
sublayers,

3. 1I0RIZ01'l'TAL LAYERS

The effect of porous matrix inhomogeneity on
natural convection through horizontal layers can be
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FIG. 5. Correlation of the heat transfer data of Figs. 6{a) and (b). (a) K 2/K, = 0.2, (b) K 2/K, = 5.

analyzed in the same manner as the vertical layers of
Section 2. However, due to space limitations, this
section will only focus briefly on the case of convection
in a two-sublayer horizontal system (Fig. 6). From the
outset, we expect to encounter a (heat transfer}­
(permeability) relationship different than in Section 2,
as the heat transfer mechanism in horizontal layers
differsmarkedly from that in tall vertical layers [13, 14].

Consider the system of Fig. 6 where Hll: = 0.5 and
the upper sublayer is five times more permeable than
the lower, K21K I = 5. Assuming once again that the
therm al conductivity of the fluid dominates the
aggregate conductivity of the porous composite [16] ,
we take Cias uniform throughout the system: in this way,
we isolate the role played by the permeability function
K 21K I on the end -to-end heat transfer through the
system. The mathematical and numerical formulation
employed previously (Sections 2.1 and 2.2) applies to
this convection problem as well; however, in this case
the grid fineness used is //I x 1= 81 x 41. A represen­
tative set of isoth erms and streamlines is presented in
Figs. 6(a) and (b) for Ra l = 150,where Ra, is based on
the end-to-end /1T, the overall height of the system , II ,
and the low permeability K I' The streamlines show
that the cellular flow prefers the more permeable upper
half of the system. The streamline pattern is no
longer ccntrosyrnrnetric (as in homogeneous systems
[14]); instead, the stre amfunction maximum is located
in the upper half, near the 'starting corner' of the cold
vertical boundary layer.

Th e map of isotherms, Fig. 6(b), reveals the existence

of strong con vective effectsin the establishment of the
temperature field. Distinct thermal layers are aligned
with the vertical walls of the porous medium .' The
vertical boundary layers are sharper in the more
permeable half of the system, as expected .

Figures 7(a) and (b) show the effect of permeability
and inhomogeneity on heat transfer. In particular, Fig.
7(a) shows that the conduction-referenced Nus selt
number Nil increa ses rather sharply as K21K I

increases, i.e. as the channel provided by the upper
sublayer becomes more permeable. Increasing the
Rayleigh number Ra l has the effect of increasin g both
the Nusselt number and the slope of each Nil (K2IKI)
curve.

Finally, Fig . 7(b) shows the effect of varying the
subla yer height ratio eli/H, where ell is the height of the
lower (less permeable) sublayer. Note that for d 1111
< 0.1 anddi/H > 0.9 the effectof eli/II on Nil becomes
less dramatic: in the former case, the less permeable
layer is too small to seriously influence the net heat
transfer, while in the latter most of the fluid has already
been discharged from the vertical boundary layers into
the core, and a further increase in di/II is not likely to
enhance by much the convective heat transfer
contribution to the net heat transfer through the
system.

The heat transfer trends exhibited in Figs. 7(a)and (b)
can be predicted and correlated based on scale analysis.
The streamline pattern of Fig. 6(a) shows that the
thickness of each vertical boundary layer decreases
sharply acro ss the interface separating the rwo
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FIG. 6. Numerical solution for ll/L = 05, Ra , = 150, II = 2, d l = d2 , K2/K I = 5, (].2/rxl = I. (a) Streamline
pattern, (b) isotherm pattern.
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sublayers. Since each sublayer is homogeneous , the
order of magnitude of the vertical boundary layer
thickness in each sublayer is [8] [see also equation (20)]

(
9PKh 1T/2) - 1/2

~i~d, , i=I,2. (21)
exv

Then,looking at the variable-thickness boundary layer
coating one vertical wall, the total heat transfer rate
through the wall is of order

where , for example, Q I is the heat transfer collected over
the sublayer vertical boundary layer ofthickness ~ I and
height d I ' RecalIing the dimensionless notation used
throughout this study

Q gPllKID.T
Nil = kHD.T/L Ra l = exv ' (23)

the scaling law (22) reduces to

Nil _ 2-3/2!:.. Ral /2 [(d l ) 1/2
II I H

+(~:r2(1- ~;YI] (24)

Based on the same argument, if the system contains II

horizontal sublayers, the scaling law (24) assumes the
more general form

NII- 2- 3/2!:.. Ra~/2 t (~idl)1/2. (25)
II 1= 1 Kill

To test the validity of the above scaling, the heat
transfer results of Figs. 7(a) and (b) have been replotted

in Figs . 8(a) and (b) as the new group

Nil
G = n ~ 0(1). (26)

2- 3/2(L/ll) Ra~/2 L (K,dJK Ill)1/2
i = 1

It is clear that in the high Ra cases covered by the heat
transfer calculations reported in Figs. 8(a)and (b), the G
group is of 0(1) , in agreement with the predictions
based on scale analysis.Therefore, the Nusselt number
expression (25) pro vides an adequate means for
predicting the scale of heat transfer in a multilayered
horizontal porous medium in the boundary layer
regime.

4. CO"CLUSIO"'S

The object of this study has been to document the
effectof porous medium inhomogeneity on the natural
convection heat transfer through systems heated in the
horizontal direction. Special emphasis was placed. on
the effect of nonuniform permeability. Section 2 was
devoted to porous systems composed of sublayers
oriented vertically. Numerical solutions to the
convection problem showed that:

(a) discontinuities in porous medium perme ability
cause cusps in both streamline and isotherm
patterns;

(b) the flow prefers to inhabit the sublayer(s) of
highest permeability;

(c) the heat transfer rate is influenced substantially
by the thickness and permeability of the
peripheral sublayers adjacent to the heated
vertical walls [Figs. 4(a) and (b)];

(d) an important dimensionless parameter is the
ratio of sublayer thickness divided by the
boundary layer thickness based on sublayer
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properties [Figs. 5(a) and (b)]: this parameter
was used to correlate the heat transfer data.

Section 3 focused on convection in porous systems
with horizontal sublayers, The new feature revealed by
the patterns of Figs. 6(a) and (b) is the presence of
vertical boundary layers of nonuniform thickness: this
feature is due to the fact that the constant-permeability
sublayers are normal to the differentially heated side
walls. Numerical heat transfer calculations showed that
the total heat transfer rate through horizontally layered
systems depends strongly on the relative permeability
and thickness of the sublayers [Figs. 7(a) and (b)]. The
heat transfer data were correlated via scaling
arguments (Fig. 8).
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CONVECTION NATURELLE DANS UN MILIEU POREUX A COUCHES VERTICALES OU
HORIZONTALES ET CHAUFFE LATERALEMENT

Resume-On etudie numeriquement l'effet d'une permeabilite et d'une diffusivite thermique non uniformes
pour un systeme poreux chauffe lateralement, La premiere partie de l'etude, section 2, s'interesse aux systernes
composes de sous-couches verticales , On montre que Ie flux thermique de chaleur est sensiblement influence
par l'epaisseur etla perrneabilite des couches peripheriques adjacentes aux parois verticales chauffees, Les
resultats de transfert thermique sont unifies en utilisant Ie rapport de l'epaisseur de la sous-couche
peripherique ;), l'epaisseur de la couche limite basee sur les proprietes de 1a sous-couche peripherique. La
second partie de l'etude, en section 3, concerne des systemes poreux composes de sous-couches horizon tales
avec des perrneabilites differentes, On montre qu'a cause de l'absence d'hornogeneite, les parois verticales du
systerne sont bordees par des couches limites dontles epaisseurs varient d'une sous-couche a I'autre, Une loi

genera Ie d'echellc cst donnee pour les systernes ;), couches horizontales.

FREIE KONVEKTION IN VERTIKAL UND HORIZONTAL GESCHICHTETEN,
SEITLICH BEHEIZTEN, POROSEN MEDlEN

Zusammenfassung-Es wird der EinfluOder ungleichformigen Permeabilitiit und Wiirmeleitfiihigkeit aufdie
freie Konvektion in einem porosen, seitlich beheizten System numerisch untersucht. Der erste Teil der
Abhandlung konzentriert sich in Abschnill2 aufSysteme, die aus vertikalen Teilschichten bestehen. Es wird
gezeigt, dall der Wiirmeiibergang wesentlich von der Dicke und der Perrneabilitiit der an die beheizten
vertikalen Wande angrenzenden Randschichten abhiingt. Die Ergebnisse des Warmeiibergangs werden
dargestellt, indem der Quotient aus der Dicke der Randschicht und der mit den Stoflwerten der Randschicht
gebildeten Grenzschicht verwendet wird. Der zweite Teil der Untersuchung handelt in Abschnill 3 von
poriisen System en, die aus horizontalen Teilschichten mit unterschiedlichen Permeabilitiiten bestehen . Es
wird gezeigt, dall sich wegen dieses Mangels an Homogenitiit an den vertikalen Wiinden des Systems
Grenzschichten befinden,deren Dicke von einerTeilschicht zur niichsten variiert. Es wird iiberein allgemeines

Ahnlichkeitsgesetz der Wiirmeiibertragung fiir horizontal geschichtete Systeme berichtet.
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ECTECTBEHHA5I KOHBEKIUI5I B HArPEBAEMblX CEOKY BEPTlIKAllbllblX II
rOPH30HTAllbHbIX Cl105lX flOPlICTblX CPEJJ.

AHHOTauMll-l.{IIC:leIlIlO nccnenyercs B.11111lllle neonuoponnon npOII\luae~IOCTII Il 'rextneparyponpo­
BO,UIIOCTII na eCTeCTBellllYIO KOIIBeKUll1O B narpeaaevtoii C60KY nopucroii CIICTe~le. Ilepsas xacrs
IlCC.1ellOBaIlIl1l (naparparp 2) nocsaureua CIICTe~la~l, cocroaumxt 113 nepruransuux nO;lC.10eB.
Iloxaaano, 'ITO na IIIlTellCIiBIIOCTb 'rertnortepenoca cyiuecrseuuoe anusmte OKa3bIBalOT TO.1111lllla II
nponnuaesrocrs nepllljJeplliiHbIX noncnoea, npnneraiounrx K narperstxi aepruxansui.rxt creaxaxi,
Peayrn.rarsi no rennonepenocy 06pa6aTbIBalOTClI C nO~I0111blO ornoureuus TO.1111llllbl nepndepnruroro
nO'uC.101l. K TO.1111lllle norpaunsnoro C:lOlI, Bbl'lIlc.111e~lOii no xapaxrepncruxasr nepndcpniinoro
noncnos. Bropas sacrs IICC.1enOBaIllI1l (naparparp 3) nocasuieua nopncrstvi CIICTe~la~l, cocroaunrxt
113 ropmouransusrx nO,UC.10eB C pa3.111'lllbI~1II npomruaexrocrsxm. Floxaaauo, 'ITO 113-3a OTCYTCTBlilI
OllHOP0,UHOCTIi na BepTlIKa.%lIbIX crenxax CIICTe~lbl ofipaayiorca norpaunsusre C.101l, TO.1111lllla
KOTOpbIX mxrenserca OT nOllC.1011 K nOllc.101O. Ilpcnnoxeu 06111llii JaKOIl nO;lo61111 rennonepenoca

1L111 CIICTe~1 C ropmonransnuxnr C.101l~1I1.




